Laplacian Linear Discriminant Analysis Approach to Unsupervised Feature Selection
نویسندگان
چکیده
منابع مشابه
Discriminant Analysis for Unsupervised Feature Selection
Feature selection has been proven to be efficient in preparing high dimensional data for data mining and machine learning. As most data is unlabeled, unsupervised feature selection has attracted more and more attention in recent years. Discriminant analysis has been proven to be a powerful technique to select discriminative features for supervised feature selection. To apply discriminant analys...
متن کاملSpectral clustering and discriminant analysis for unsupervised feature selection
In this paper, we propose a novel method for unsupervised feature selection, which utilizes spectral clustering and discriminant analysis to learn the cluster labels of data. During the learning of cluster labels, feature selection is performed simultaneously. By imposing row sparsity on the transformation matrix, the proposed method optimizes for selecting the most discriminative features whic...
متن کاملA comment on "Laplacian linear discriminant analysis"
The recent paper by Tang et al. [1] has proven that Fisher’s criterion function is equal to a novel linear discriminant criterion function. The novel function is then related to spectral decomposition of the Laplacian of a graph. The equivalence between the two functions is based on Theorem 1 given in the beginning of Ref. [1]. Although some mathematical analysis is established in their paper, ...
متن کاملUnsupervised Discriminant Projection Analysis for Feature Extraction
This paper develops an unsupervised discriminant projection (UDP) technique for feature extraction. UDP takes the local and non-local information into account, seeking to find a projection that maximizes the non-local scatter and minimizes the local scatter simultaneously. This characteristic makes UDP more intuitive and more powerful than the up-to-date method ocality preserving projection (LP...
متن کاملStructure Regularized Unsupervised Discriminant Feature Analysis
Feature selection is an important technique in machine learning research. An effective and robust feature selection method is desired to simultaneously identify the informative features and eliminate the noisy ones of data. In this paper, we consider the unsupervised feature selection problem which is particularly difficult as there is not any class labels that would guide the search for releva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics
سال: 2009
ISSN: 1545-5963
DOI: 10.1109/tcbb.2007.70257